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Introduction

In time-domain analysis the response of a
dynamic system to an input is expressed as a
function of time.

It is possible to compute the time response of a
system if the nature of input and the
mathematical model of the system are known.

Usually, the input signals to control systems are
not known fully ahead of time.

It is therefore difficult to express the actual input

signals mathematically by simple equations.
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Standard Test Signals

* The characteristics of actual input signals are a
sudden shock, a sudden change, a constant
velocity, and constant acceleration.

 The dynamic behavior of a system is therefore
judged and compared under application of
standard test signals — an impulse, a step, a
constant velocity, and constant acceleration.

 The other standard signal of great importance
is a sinusoidal signal.
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Standard Test Signals

* Impulse signal

— The impulse signal imitate the
sudden shock characteristic of

actual input signal. 8(t)
A t=0 1
5(t) = -
0 t=0
0 7t

— If A=1, the impulse signal is
called unit impulse signal.
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Standard Test Signals

e Step signal
— The step signal imitate

the sudden change u(t)

characteristic of actual

input signal. A
A t>0

u(t) = 0 2
0 t<O

— If A=1, the step signal is

called unit step signal
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Standard Test Signals

e Ramp signal "t

— The ramp signal imitate
the constant velocity
characteristic of actual

input signal.
0 7t
At t>0
r(t) =
0 t<O

— If A=1, the ramp signal
is called unit ramp
signal

-

unit ramp signal
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Standard Test Signals

.. p(t)
e Parabolic signal %
— The  parabolic  signal
imitate  the constant
acceleration characteristic
of actual input signal. 5 >t
( (t) a
At? i
- t 2 0 FY.7 | —
p) =1 2
parabolic signal with slope A a|..........
0 t<O
p(t) 4 osar—y |

—If A=1, the parabolic s
signal is called unit

parabolic signal. ) 1 Unit parabolic signal
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Relation between standard Test Signals

Impulse 5(t)={A =0 d
0 t#0 —
j dt
A t=0
Step U(t):{o t<0 d
| dt
At t20
Ramp r(t)={o f<0 ]
I A dt
Parabolic p)=15 =0
0 t<0
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Laplace Transform of Test Signals

* Impulse
A t=0
5(t)={
0 t=0
Lio(t)} = o(s) = A
s Step A t>0
u(t)={
0 t<0

L{u(®)} = U(s) = g
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Laplace Transform of Test Signals

* Ramp r(t):{st t<t§0

L{r(0)} = R(s) = Sﬁz

 Parabolic ([ At2
p(t) =< »

L{p(t)}=P(s) = Sﬁ
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Time Response of Control Systems

* Time response of a dynamic system response to an input
expressed as a function of time.

\/\/\/\
Nt &7

>

1

* The time response of any system has two components
* Transient response

* Steady-state response.
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Time Response of Control Systems

* When the response of the system is changed from equilibrium it
takes some time to settle down.

* This is called transient response.

Step Input

* The response of the
system after the transient
response is called steady -
state response.

Response

Transient Response

Steady State Response
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Time Response of Control Systems

* Transient response depend upon the system poles only and not
on the type of input.

* It is therefore sufficient to analyze the transient response using a
step input.

* The steady-state response depends on system dynamics and the
input quantity.

* It is then examined using different test signals by final value
theorem.
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Introduction
The first order system has only one pole.

co_ K
R(s) Ts+1

Where K is the D.C gain and T is the time constant
of the system.

Time constant is a measure of how quickly a 1%
order system responds to a unit step input.

D.C Gain of the system is ratio between the input
signal and the steady state value of output.
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Introduction

* The first order system given below.

10
5s+1

G(s) =

* D.Cgainis 10 and time constant is 5 seconds.

* For the following system

6/2

G = =
QP 1/2s + 1

 D.C Gain of the system is 6/2 and time constant is 1/2

seconds.
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Impulse Response of 15t Order System

* Consider the following 1t order system

5(t)
A

‘T R(s)

C(s)

R(s) = 5(s) =
C(s) = K
Ts+1
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Impulse Response of 15t Order System

C(s) = A

* Re-arrange following equation as

* In order to compute the response of the system in time domain
we need to compute inverse Laplace transform of the above
equation.

R C _ Ce—a C(t)zﬁe_t/T
S+a T
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Impulse Response of 15t Order System

e If K=3 and T=2s then ¢(t) = ?e

1.5

c(t)

0.5~

K ot

K/T*exp(-t/T)

4 6 8 10
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Step Response of 15t Order System

* Consider the following 1t order system

o o

R(s) =U(s) = 1
S

K
C(9) = S(Ts + 1)

* In order to find out the inverse Laplace of the above equation, we
need to break it into partial fraction expansion.

K KT
C(s) = —-
s Ts+ Lassociate Prof. Dr. Mohamed Ahmed Ebrahim




Step Response of 15t Order System

C(s) K(l_ T j

s Ts+1

* Taking Inverse Laplace of above equation

c(t) = K(u(t)—e‘”T)

 Where u(t)=1
c®) =K(1-etT)

 When t=T (time constant)

c®) =K(1-e")=0.632K
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Step Response of 15t Order System

+ IfK=10and T=1.5sthen  c(t) = K(l—e_m)

K*(1-exp(-t/T))
11 F L L L L L L L L L
0= T s T s s s = -
9l Step Response
o steady state output 10
. utpu
s D.C Gain = K = 2% it _ 22

e — - - Input 1

c(t)

Unit Step Input

r r
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Step Response of 15t order System

e System takes five time constants to reach its
final value.

: Slope = —
clf)
r c(fy=1—¢ D
II L 'If
| \
.\\f = i A
. I | -
In'l A E
f
I|'
0.632 .“ -
{ A A
f
I|'
-II = - Y Py =
/8 &5 << § 3
il el [T = o
WO = = [ [
I I I I
0 T 2T 3T 4T 5T t 1hmed Ebrahim



Step Response of 15t Order System
« IfK=10andT=1,3,5,7  c(t) = K(l—e‘“T)

K*(1-exp(-t/T))

11;
107 T=1s S
9 - ~
8- T=3s -
7 =
T=5
~ 6 N
° 5- T=7s
4 =
3 L=
2
1
/
O r r C
0 5 10 15
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Step Response of 15t Order System

e |[fK=1,3,5 10and T=1 c(t) = K(l - e_t/T )

K*(1-exp(-t/T))

11«
10 -
K=10
9 -
g -
vd®
6 -
= K=5
(&) 5 L
4 -
K=3
3L
2
K=1
1
0
0
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Relation Between Step and impulse
response

* The step response of the first order system is

e =Ki—eT)=K—Ke T

* Differentiating c(t) with respect to t yields

0 e

dC(t) _ K e_t/T

dt T
Associate Prof. Dr. Mohamed Ahmed Ebrahim



Analysis of Simple RC Circuit

i — 1@

R-i(t) +V(t) = v, (t)
(0 = dCv®) _ - dvn)

dt dt
dv(t) _
dr V(Tt) — VT (®)

state
variable

— RC

Input
waveform

Vr (t)C@

R

C=

— V(1)
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Analysis of Simple RC Circuit

Step-input response: RC d\(;it) +Vv(t) = v,u(t)
v(t) = Ke 7R 4 v u(t)
Vou(t) match initial state:
Vo

v(0)=0 = K+vu(t)=0 = K+v,=0

Vo(l-e't/RC)U(t) output response for step-input:

v(t) = v, L—e RS )u(t)
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Example 1

* Impulse response of a 1%t order system is given below.

* Find out
— Time constant T
— D.CGainK
— Transfer Function
— Step Response
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Example 1

e The Laplace Transform of Impulse response of a
system is actually the transfer function of the system.

 Therefore taking Laplace Transform of the impulse
response given by following equation.

Cs)=— > x1=— 2 % 5(s)
S+0.5 S+0.5

ce)_ce)__3
5(s) R(s) S+0.5

C(s) 6
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Example 1

* Impulse response of a 1%t order system is given below.

c(t) =3¢
* Find out
— Time constant T=2
— D.C Gain K=6
— Transfer Function —— Cls) __6
R(s)  2S+1

— Step Response
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Example 1

* For step response integrate impulse response

ct) = 3¢
[c)dt = 3[e " dt

c.(t) =-6e"" +C
* We can find out C if initial condition is known e.g. ¢ (0)=0

0=-6e">"+C
C=6

c.(t) = 66"
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Example 1

* If initial conditions are not known then partial fraction
expansion is a better choice

C(s) 6
R(s) 2S+1
since R(s) is a stepinput, R(s) =é
Cls)=—2
S(2S +1)
6 A B
=—+

s2S+1) s 2s+1

6 6 6

s2s+1) s s+0.5

B —0.5t
C(t) f5:8i:88rof: Or . Moliamed Afimed Ebrafiim



Ramp Response of 15t Order System

* Consider the following 1%t order system

o o

1
R(S) = 3_2
K
Cls) = Sz(Ts +1)

* The ramp response is given as

c®) =Kft—T +Te T
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Parabolic Response of 15t Order System

* Consider the following 1%t order system

o o
1

R(S):—3 Therefore, C(S): 3 K
S s*(Ts+1)
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Practical Determination of Transfer
Function of 15t Order Systems

Often it is not possible or practical to obtain a system's
transfer function analytically.

Perhaps the system is closed, and the component parts are
not easily identifiable.

The system's step response can lead to a representation even
though the inner construction is not known.

With a step input, we can measure the time constant and the
steady-state value, from which the transfer function can be
calculated.
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Practical Determination of Transfer
Function of 15t Order Systems

* If we can identify T and K empirically we can obtain the
transfer function of the system.

co K
R(s) Ts+1
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Practical Determination of Transfer Function
of 15t Order Systems

For example, assume the unit
step response given in figure.

From the response, we can
measure the time constant, that
is, the time for the amplitude to
reach 63% of its final value.

Since the final value is about
0.72 the time constant is
evaluated where the curve
reaches 0.63 x 0.72 = 0.45, or
about 0.13 second.

K is simply steady state value.

plitu

01 T=0.13s

| [ L | 1 1 1
1] o1 02 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

e Thus transfer function s
obtained as:
C(s) 0.72 5.5
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First Order System with a Zero

C(s)  K{+as)
R(s)  Ts+1

» Zero of the system lie at -1/a and pole at -1/T.

e Step response of the system would be:

Cs) = K(1+ os)
S(Ts+1)
Cis)= R4 Kla -T)
S (Ts+1)

K _
ct) =K+—(a-T)e T
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First Order System With Delays

* Following transfer function is the generic
representation of 15t order system with time
lag.

co) K
R(s) Ts+1

* Where t,is the delay time.
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First Order System With Delays

C(s) G
_ = e
R(s) Ts+1

------- Unit Step
Step Response

t
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First Order System With Delays

Step Response

C(S) — lO e—ZS 10
R(s) 3s+1 K 210
C(s) = 0 o 8-
s(3s+1)
L' [e®F(s)]= f(t-d)u(t—-0) © -
10 -10
L [(=—+ e )= B
I s s+1/ 3) ] !
[10(t — 2) -10e ¥ 2 u(t - 2) .
ty=2S
N T=3
6 5 10

Time (sec)
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Second Order System

We have already discussed the affect of location of poles and zeros on
the transient response of 1%t order systems.

Compared to the simplicity of a first-order system, a second-order system
exhibits a wide range of responses that must be analyzed and described.

Varying a first-order system's parameter (T, K) simply changes the speed
and offset of the response

Whereas changes in the parameters of a second-order system can change
the form of the response.

A second-order system can display characteristics much like a first-order
system or, depending on component values, display damped or pure
oscillations for its transient response.
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Introduction

e A general second-order system is characterized by the
following transfer function.

R(s) E(s) > C(s)
C(S) B 2 8 s(s + 2{w,)

W

R(s) 52 +2{w,S +

W, ——> un-damped natural frequency of the second order system,
which is the frequency of oscillation of the system without
damping.

é/ ——> damping ratio of the second order system, which is a measure

of the degree of resistance to change in the system output.
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Example 2

 Determine the un-damped natural frequency and damping ratio
of the following second order system.

C(s) 4
R(s) s?+2s+4

e Compare the numerator and denominator of the given transfer
function with the general 2"9 order transfer function.

C(s) B a)r%
R(S)  s? +2¢w.s+ o}
2 j— —_—
On =4 = @ =2 = 24,5 = 25

= lw,, =1

;/{+2g”a)ns+7»ﬁ = +2s+/(
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Introduction

C(s) a)ﬁ
R(S)  s? +2¢w, s+ w?

* Two poles of the system are

—a)n§+a)m/§2 —1
_a)né/_wn\/élz_l
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Introduction

_wné/+a)nVé/2_1
_wng_angz_l

e According the value of 4’ , a second-order system can be set into
one of the four categories:

1. Overdamped - when the system has two real distinct poles ( é/ >1).

jw
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Introduction

_wné/+a)nVé/2_1
_wng_angz_l

e According the value of 4’ , a second-order system can be set into
one of the four categories:

2. Underdamped - when the system has two complex conjugate poles (0 <{ <1)

jw
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Introduction

_wné/+a)nVé/2_1
_wng_angz_l

e According the value of 4’ , a second-order system can be set into
one of the four categories:

3. Undamped - when the system has two imaginary poles ( é’ =0).

jw

X

X
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Introduction

_wné/+a)nVé/2_1
_wng_angz_l

e According the value of 4’ , a second-order system can be set into
one of the four categories:

4. Critically damped - when the system has two real but equal poles ( = 1).

jw
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Underdamped System

For 0<¢ <1 and w, > 0, the 2"9 order system’s response due to a
unit step input is as follows.

Important timing characteristics: delay time, rise time, peak
time, maximum overshoot, and settling time.

c(t) A

Allowable tolerance

0.5

0

- [ -
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Delay Time

* The delay (t,) time is the time required for the response to
reach half the final value the very first time.

0.5

0




Rise Time
* The rise time is the time required for the response to rise from 10%
to 90%, 5% to 95%, or 0% to 100% of its final value.

* For underdamped second order systems, the 0% to 100% rise time is
normally used. For overdamped systems, the 10% to 90% rise time is
commonly used.

c(r) A

0.5

0




Peak Time

* The peak time is the time required for the response to reach
the first peak of the overshoot.

0.5

0




Maximum Overshoot

The maximum overshoot is the maximum peak value of the
response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to
use the maximum percent overshoot. It is defined by

c(t,) — c(0)

Maximum percent overshoot =
c(00)

X 100%

The amount of the maximum (percent) overshoot directly
indicates the relative stability of the system.
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Settling Time

* The settling time is the time required for the response curve
to reach and stay within a range about the final value of size
specified by absolute percentage of the final value (usually 2%
or 5%).

(1) A

Allowable tolerance

_\_&f ______________ ;_f/_/ 0.05

T ﬁ/ 0.02




Step Response of underdamped System

2
C(s) B o Step Response a)ﬁ

R(s) 2 + 20w, S+ wf Cls) = (52 + 24w ,S + o, )

* The partial fraction expansion of above equation is given as

C(S)zl— : S+ 24w,

S 'S +2§a)ns+a)§

wrli-¢?)
s+2§a)n) S s +2§a) s+§a) j—a) é/a)n/
K_/ -
C(s) =—- g
(s + ¢o,, I—¢ /)1 |
ﬂssocuzte Prof. ﬁoﬁamez{ hmed Ebrafim
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Step Response of underdamped System

1 S+ 2w
C(s)=—-— L
° S (S+§a)n)2+a)ﬁ(l—§2)

* Above equation can be written as

1 S+ 2w
Cls) =L SF20n
S (S+§a)n) T @y
* Where w4 =w,\1-¢? ,is the frequency of transient oscillations
and is called damped natural frequency.

* The inverse Laplace transform of above equation can be obtained
easily if C(s) is written in the following form:

C(s) = L — kG <@

S S+ lw + o
( 4,?Lrs]socuzte (grqf g)r ﬁo med jll?med' Ebrafiim




Step Response of underdamped System

1 S+ (w cw
C(s) =~ - n :
¥ S (s+g“a)n)2+a)§ (S+§a)n)2+a)§

S =

1 S+ lw 1-¢72
C(s) = —- 52” — 3 —
S (s+§a)n) + Wy (s+§a)n) + Wy
S (s+¢w, ) + o] N e (s+¢w, ) + o]
c(t) =1-e "' cos Wyl — ] e sin Wyt

J1-¢2
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Step Response of underdamped System

QV e—g“a)nt
1-¢2

g
1-¢7

Wy :C()n\fl—é/z
:a)n

c(t) =1—e " cos Wyl —

sin @yt

c(t) =1—e | cos wyt +

sin @yt

* When £ =0

c(t) =1-cosw,t
Associate Prof. Dr. Mohamed Ahmed Ebrakim



Step Response of underdamped System

4
1-¢2

If £=01 and w,=3

1.8¢

c(t) =1—e | cosawyt +

Sin a)d {

1.6

1.4}

1.2}

1ﬁ

0.8~

0.6

0.4~

0.2~

0 j r r R it R z A
0 5 ﬁioououwc6£uy LT g JVLUIMI!lOJ ﬂﬁmef E5fdhlm




Step Response of underdamped System

c(t) =1— e 4@t

If =05 and o,

cos oyl +

=3

4

1-¢2

Sin a)d {

1.4;

1.2+

0.8
0.6

0.4

0.2)
0

ne

0 2

_/jmouuuw éruy. T é JVLununf d jllimed' Ebrahim



Step Response of underdamped System

ct) =1—-e~*"

If £=0.9 and o,

cos wyt +

=3

4

1-¢2

Sin a)d {

1.4:

1.2

1ﬁ

0.8

0.6

0.4+~

0.2~
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Step Response of underdamped System

c(t) =1— e 4@t

cos oyl +

4

J1-¢72

Sin a)d {

med Ebrahim



S-Plane (Underdamped System)

Since w?{? — w?({? — 1) = w?, the distance

— C()né/ + ), \/ 4/2 —1 from the pole to the originis w and { = cosf

_a)ng_a)n\/élz_l
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Analytical Solution
c(t) =1—e ' [cos oyt + ﬁ sin a)dt]
Rise time: set c(t)=1, we have t,. = £
dc(t)

m— ; 4/2
E— Wy = —
Wy d n

Peak time: set = (, we have t, = =

Maximum overshoot: M,, = c(tp) —1

= ¢~ (CW/WAT (for ynity output)

Settling time: the time for the outputs always
within 2% of the final value is approximately ziw
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