Automatic Control (1) By Associate Prof. / Mohamed Ahmed Ebrahim Mohamed

E-mail: mohamedahmed en@yahoo.com

mohamed.mohamed@feng.bu.edu.eg

Web site: http://bu.edu.eg/staff/mohamedmohamed033

Lecture (4)

Time Domain Analysis

- In time-domain analysis the response of a dynamic system to an input is expressed as a function of time.
- It is possible to compute the time response of a system if the nature of input and the mathematical model of the system are known.
- Usually, the input signals to control systems are not known fully ahead of time.
- It is therefore difficult to express the actual input signals mathematically by simple equations. Associate Prof. Dr. Mohamed Ahmed Ebrahim

- The characteristics of actual input signals are a sudden shock, a sudden change, a constant velocity, and constant acceleration.
- The dynamic behavior of a system is therefore judged and compared under application of standard test signals – an impulse, a step, a constant velocity, and constant acceleration.
- The other standard signal of great importance is a sinusoidal signal.

- Impulse signal
 - The impulse signal imitate the sudden shock characteristic of actual input signal.

$$\delta(t) = \begin{cases} A & t = 0 \\ 0 & t \neq 0 \end{cases}$$

If A=1, the impulse signal is called unit impulse signal.

- Step signal
 - The step signal imitate the sudden change characteristic of actual input signal.

$$u(t) = \begin{cases} A & t \ge 0\\ 0 & t < 0 \end{cases}$$

 If A=1, the step signal is called unit step signal

- Ramp signal
 - The ramp signal imitate the constant velocity characteristic of actual input signal.

$$r(t) = \begin{cases} At & t \ge 0\\ 0 & t < 0 \end{cases}$$

- Parabolic signal
 - The parabolic signal imitate the constant acceleration characteristic of actual input signal.

$$p(t) = \begin{cases} \frac{At^2}{2} & t \ge 0\\ 0 & t < 0 \end{cases}$$

Relation between standard Test Signals

Laplace Transform of Test Signals

• Impulse

$$\delta(t) = \begin{cases} A & t = 0\\ 0 & t \neq 0 \end{cases}$$

$$L\{\delta(t)\} = \delta(s) = A$$

• Step

$$u(t) = \begin{cases} A & t \ge 0\\ 0 & t < 0 \end{cases}$$
$$L\{u(t)\} = U(s) = \frac{A}{S}$$

Laplace Transform of Test Signals

• Ramp $r(t) = \begin{cases} At & t \ge 0\\ 0 & t < 0 \end{cases}$

$$L\{r(t)\} = R(s) = \frac{A}{s^2}$$

Parabolic

$$p(t) = \begin{cases} \frac{At^2}{2} & t \ge 0\\ 0 & t < 0 \end{cases}$$
$$L\{p(t)\} = P(s) = \frac{A}{S^3}$$
Associate Prof. Dr. Mohamed Ahmed Ebrahim

Time Response of Control Systems

• Time response of a dynamic system response to an input expressed as a function of time.

- The time response of any system has two components
 - Transient response
 - Steady-state response.

Time Response of Control Systems

- When the response of the system is changed from equilibrium it takes some time to settle down.
- This is called transient response.

• The response of the system after the transient response is called steady state response.

Time Response of Control Systems

- Transient response depend upon the system poles only and not on the type of input.
- It is therefore sufficient to analyze the transient response using a step input.
- The steady-state response depends on system dynamics and the input quantity.
- It is then examined using different test signals by final value theorem.

• The first order system has only one pole.

$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1}$$

- Where *K* is the D.C gain and *T* is the time constant of the system.
- Time constant is a measure of how quickly a 1st order system responds to a unit step input.
- D.C Gain of the system is ratio between the input signal and the steady state value of output.

• The first order system given below.

 $G(s) = \frac{10}{5s+1}$

• D.C gain is 10 and time constant is 5 seconds.

• For the following system

$$G(s) = \frac{6}{s+2} \qquad = \frac{6/2}{1/2s+1}$$

D.C Gain of the system is 6/2 and time constant is 1/2 seconds.

Impulse Response of 1st Order System

• Consider the following 1st order system

Impulse Response of 1st Order System

$$C(s) = \frac{K}{Ts+1}$$

• Re-arrange following equation as

$$C(s) = \frac{K/T}{s+1/T}$$

 In order to compute the response of the system in time domain we need to compute inverse Laplace transform of the above equation.

$$L^{-1}\left(\frac{C}{s+a}\right) = Ce^{-at} \qquad c(t) = \frac{K}{T}e^{-t/T}$$
Associate Prof. Dr. Mohamed Ahmed Ebrahim

Impulse Response of 1st Order System

Step Response of 1st Order System

• Consider the following 1st order system

• In order to find out the inverse Laplace of the above equation, we need to break it into partial fraction expansion.

$$C(s) = \frac{K}{s} - \frac{KT}{Ts + 1}$$
 Associate Prof. Dr. Mohamed Ahmed Ebrahim

Step Response of 1st Order System

$$C(s) = K\left(\frac{1}{s} - \frac{T}{Ts+1}\right)$$

• Taking Inverse Laplace of above equation

$$c(t) = K\left(u(t) - e^{-t/T}\right)$$

Where u(t)=1

$$c(t) = K\left(1 - e^{-t/T}\right)$$

• When t=T (time constant)

$$c(t) = K(1 - e^{-1}) = 0.632K$$

Associate Prof. Dr. Mohamed Ahmed Ebrahim

Step Response of 1st Order System If K=10 and T=1.5s then $c(t) = K(1 - e^{-t/T})$

Step Response of 1st order System

• System takes five time constants to reach its final value.

Step Response of 1st Order System If K=10 and T=1, 3, 5, 7 $c(t) = K(1 - e^{-t/T})$

Step Response of 1st Order System If K=1, 3, 5, 10 and T=1 $c(t) = K(1 - e^{-t/T})$

Relation Between Step and impulse response

• The step response of the first order system is

$$c(t) = K(1 - e^{-t/T}) = K - Ke^{-t/T}$$

• Differentiating c(t) with respect to t yields

$$\frac{dc(t)}{dt} = \frac{d}{dt} \left(K - K e^{-t/T} \right)$$

$$\frac{dc(t)}{dt} = \frac{K}{T} e^{-t/T}$$

Analysis of Simple RC Circuit

Step-input response:

$$RC \frac{dv(t)}{dt} + v(t) = v_0 u(t)$$
$$v(t) = Ke^{-t/RC} + v_0 u(t)$$

match initial state:

$$v(0) = 0 \implies K + v_0 u(t) = 0 \implies K + v_0 = 0$$

output response for step-input:

$$v(t) = v_0 (1 - e^{-t/RC}) u(t)$$

• Impulse response of a 1st order system is given below.

$$c(t) = 3e^{-0.5t}$$

- Find out
 - Time constant T
 - D.C Gain K
 - Transfer Function
 - Step Response

- The Laplace Transform of Impulse response of a system is actually the transfer function of the system.
- Therefore taking Laplace Transform of the impulse response given by following equation.

$$c(t) = 3e^{-0.5t}$$

$$C(s) = \frac{3}{S+0.5} \times 1 = \frac{3}{S+0.5} \times \delta(s)$$

$$\frac{C(s)}{\delta(s)} = \frac{C(s)}{R(s)} = \frac{3}{S+0.5}$$

$$\frac{C(s)}{R(s)} = \frac{6}{2S + 1}$$

$$\frac{C(s)}{R(s)} = \frac{6}{2S + 1}$$

$$C(s) = \frac{6}{2S + 1}$$

• Impulse response of a 1st order system is given below.

$$c(t) = 3e^{-0.5t}$$

- Find out
 - Time constant T=2
 - D.C Gain K=6
 - Transfer Function $\frac{C(s)}{R(s)} = \frac{6}{2S+1}$
 - Step Response

• For step response integrate impulse response

$$c(t) = 3e^{-0.5t}$$

$$\int c(t)dt = 3\int e^{-0.5t}dt$$

$$c_s(t) = -6e^{-0.5t} + C$$

• We can find out C if initial condition is known e.g. c_s(0)=0

$$0 = -6e^{-0.5 \times 0} + C$$

$$C = 6$$

$$c_s(t) = 6 - 6e^{-0.5t}$$

Associate Prof. Dr. Mohamed Ahmed Ebrahim

• If initial conditions are not known then partial fraction expansion is a better choice

$$\frac{C(s)}{R(s)} = \frac{6}{2S+1}$$

since $R(s)$ is a step input, $R(s) = \frac{1}{s}$
 $C(s) = \frac{6}{s(2S+1)}$
 $\frac{6}{s(2S+1)} = \frac{A}{s} + \frac{B}{2s+1}$
 $\frac{6}{s(2S+1)} = \frac{6}{s} - \frac{6}{s+0.5}$
 $c(t) = \frac{6}{ssociate} \int_{s}^{-0.5t} Dr$. Mohamed Ahmed Ebrahim

Ramp Response of 1st Order System

• Consider the following 1st order system

$$R(s) \longrightarrow \frac{K}{Ts+1} \longrightarrow C(s)$$
$$R(s) = \frac{1}{s^2}$$
$$C(s) = \frac{K}{s^2(Ts+1)}$$

• The ramp response is given as

$$c(t) = K\left(t - T + Te^{-t/T}\right)$$

Parabolic Response of 1st Order System

• Consider the following 1st order system

$$R(s) \longrightarrow \frac{K}{Ts+1} \longrightarrow C(s)$$

$$R(s) = rac{1}{s^3}$$
 Therefore, $C(s) = rac{K}{s^3(Ts+1)}$

Practical Determination of Transfer Function of 1st Order Systems

- Often it is not possible or practical to obtain a system's transfer function analytically.
- Perhaps the system is closed, and the component parts are not easily identifiable.
- The system's step response can lead to a representation even though the inner construction is not known.
- With a step input, we can measure the time constant and the steady-state value, from which the transfer function can be calculated.

Practical Determination of Transfer Function of 1st Order Systems

• If we can identify *T* and *K* empirically we can obtain the transfer function of the system.

$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1}$$

Practical Determination of Transfer Function of 1st Order Systems

- For example, assume the unit step response given in figure.
- From the response, we can measure the time constant, that is, the time for the amplitude to reach 63% of its final value.
- Since the final value is about 0.72 the time constant is evaluated where the curve reaches 0.63 x 0.72 = 0.45, or about 0.13 second.
- K is simply steady state value.

 Thus transfer function is obtained as:

C(s)0.72 5.5 Associate Prof. Dr. 0.13s + 1Associate Arof. Dr. Mohamed Ahn

First Order System with a Zero

$$\frac{C(s)}{R(s)} = \frac{K(1+\alpha s)}{Ts+1}$$

- Zero of the system lie at $-1/\alpha$ and pole at -1/T.
- Step response of the system would be:

$$C(s) = \frac{K(1 + \alpha s)}{s(Ts + 1)}$$
$$C(s) = \frac{K}{s} + \frac{K(\alpha - T)}{(Ts + 1)}$$
$$c(t) = K + \frac{K}{T}(\alpha - T)e^{-t/T}$$

First Order System With Delays

 Following transfer function is the generic representation of 1st order system with time lag.

$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1}e^{-st_d}$$

• Where t_d is the delay time.

First Order System With Delays

$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1}e^{-st_d}$$

First Order System With Delays

Second Order System

- We have already discussed the affect of location of poles and zeros on the transient response of 1st order systems.
- Compared to the simplicity of a first-order system, a second-order system exhibits a wide range of responses that must be analyzed and described.
- Varying a first-order system's parameter (T, K) simply changes the speed and offset of the response
- Whereas changes in the parameters of a second-order system can change the *form of* the response.
- A second-order system can display characteristics much like a first-order system or, depending on component values, display damped or pure oscillations for its *transient response*.

• A general second-order system is characterized by the following transfer function.

- $\mathcal{O}_n \longrightarrow$ un-damped natural frequency of the second order system, which is the frequency of oscillation of the system without damping.
- G → damping ratio of the second order system, which is a measure of the degree of resistance to change in the system output.
 Associate Prof. Dr. Mohamed Ahmed Ebrahim

• Determine the un-damped natural frequency and damping ratio of the following second order system.

$$\frac{C(s)}{R(s)} = \frac{4}{s^2 + 2s + 4}$$

 Compare the numerator and denominator of the given transfer function with the general 2nd order transfer function.

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\omega_n^2 = 4 \qquad \Rightarrow \omega_n = 2 \qquad \Rightarrow 2\zeta\omega_n s = 2s$$

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + 2s + 4 \qquad \Rightarrow \zeta\omega_n = 1$$

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = s^2 + 2s + 4$$
Associate Prof. Dr. Mohamed Ahmed Ebrahim

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• Two poles of the system are

$$-\omega_n\zeta + \omega_n\sqrt{\zeta^2 - 1}$$
$$-\omega_n\zeta - \omega_n\sqrt{\zeta^2 - 1}$$

$$-\omega_n\zeta + \omega_n\sqrt{\zeta^2 - 1}$$
$$-\omega_n\zeta - \omega_n\sqrt{\zeta^2 - 1}$$

- According the value of ζ , a second-order system can be set into one of the four categories:
 - 1. Overdamped when the system has two real distinct poles (ζ >1).

$$-\omega_n\zeta + \omega_n\sqrt{\zeta^2 - 1}$$
$$-\omega_n\zeta - \omega_n\sqrt{\zeta^2 - 1}$$

- According the value of ζ , a second-order system can be set into one of the four categories:
 - 2. Underdamped when the system has two complex conjugate poles (0 < ζ <1)

$$-\omega_n\zeta + \omega_n\sqrt{\zeta^2 - 1}$$
$$-\omega_n\zeta - \omega_n\sqrt{\zeta^2 - 1}$$

- According the value of ζ , a second-order system can be set into one of the four categories:
 - 3. Undamped when the system has two imaginary poles ($\zeta = 0$).

$$-\omega_n\zeta + \omega_n\sqrt{\zeta^2 - 1}$$
$$-\omega_n\zeta - \omega_n\sqrt{\zeta^2 - 1}$$

- According the value of ζ , a second-order system can be set into one of the four categories:
 - 4. *Critically damped* when the system has two real but equal poles ($\zeta = 1$).

Underdamped System

For $0 < \zeta < 1$ and $\omega_n > 0$, the 2nd order system's response due to a unit step input is as follows. Important timing characteristics: delay time, rise time, peak

time, maximum overshoot, and settling time.

Delay Time

• The delay (t_d) time is the time required for the response to reach half the final value the very first time.

Rise Time

- The rise time is the time required for the response to rise from 10% to 90%, 5% to 95%, or 0% to 100% of its final value.
- For underdamped second order systems, the 0% to 100% rise time is normally used. For overdamped systems, the 10% to 90% rise time is commonly used.

Peak Time

• The peak time is the time required for the response to reach the first peak of the overshoot.

Maximum Overshoot

The maximum overshoot is the maximum peak value of the response curve measured from unity. If the final steady-state value of the response differs from unity, then it is common to use the maximum percent overshoot. It is defined by

Maximum percent overshoot
$$= \frac{c(t_p) - c(\infty)}{c(\infty)} \times 100\%$$

The amount of the maximum (percent) overshoot directly indicates the relative stability of the system.

Settling Time

 The settling time is the time required for the response curve to reach and stay within a range about the final value of size specified by absolute percentage of the final value (usually 2% or 5%).

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \xrightarrow{\text{Step Response}} C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

• The partial fraction expansion of above equation is given as

$$C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$(s + 2\zeta\omega_n)^2 \qquad C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{s^2 + 2\zeta\omega_n s + \zeta^2\omega_n^2 + \omega_n^2 - \zeta^2\omega_n^2}$$

$$C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_n^2(1 - \zeta^2)}$$

$$Associate Prof. Dr. Mohamed Ahmed Ebrahim$$

$$C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{\left(s + \zeta\omega_n\right)^2 + \omega_n^2\left(1 - \zeta^2\right)}$$

Above equation can be written as

$$C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_d^2}$$

- Where $\omega_d = \omega_n \sqrt{1 \zeta^2}$, is the frequency of transient oscillations and is called damped natural frequency.
- The inverse Laplace transform of above equation can be obtained easily if C(s) is written in the following form:

$$C(s) = \frac{1}{s} - \frac{s + \zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2} - \frac{\zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2} - \frac{\zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2}$$
Associate Prof. Dr. Mohamed Ahmed Ebrahim

$$C(s) = \frac{1}{s} - \frac{s + \zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2} - \frac{\zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2}$$

$$C(s) = \frac{1}{s} - \frac{s + \zeta \omega_n}{(s + \zeta \omega_n)^2 + \omega_d^2} - \frac{\frac{\zeta}{\sqrt{1 - \zeta^2}} \omega_n \sqrt{1 - \zeta^2}}{(s + \zeta \omega_n)^2 + \omega_d^2}$$

$$C(s) = \frac{1}{s} - \frac{s + \zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2} - \frac{\zeta}{\sqrt{1 - \zeta^2}} \frac{\omega_d}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2}$$

$$c(t) = 1 - e^{-\zeta \omega_n t} \cos \omega_d t - \frac{\zeta}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin \omega_d t$$

$$c(t) = 1 - e^{-\zeta \omega_n t} \cos \omega_d t - \frac{\zeta}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin \omega_d t$$

$$c(t) = 1 - e^{-\zeta \omega_n t} \left[\cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right]$$

• When $\zeta = 0$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} \\ = \omega_n$$

$$c(t) = 1 - \cos \omega_n t$$

$$c(t) = 1 - e^{-\zeta \omega_n t} \left| \cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right|$$

if $\zeta = 0.1$ and $\omega_n = 3$

$$c(t) = 1 - e^{-\zeta \omega_n t} \left| \cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right|$$

if $\zeta = 0.5$ and $\omega_n = 3$

$$c(t) = 1 - e^{-\zeta \omega_n t} \left| \cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right|$$

if $\zeta = 0.9$ and $\omega_n = 3$

S-Plane (Underdamped System)

Analytical Solution

$$c(t) = 1 - e^{-\zeta \omega_n t} \left[\cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right]$$

- Rise time: set c(t)=1, we have $t_r = \frac{\pi \beta}{\omega_d}$ $\omega_d = \omega_n \sqrt{1 \zeta^2}$
- Peak time: set $\frac{dc(t)}{dt} = 0$, we have $t_p = \frac{\pi}{\omega_d}$
- Maximum overshoot: $M_p = c(t_p) 1$ = $e^{-(\zeta \omega / \omega_d)\pi}$ (for unity output)
- Settling time: the time for the outputs always within 2% of the final value is approximately $\frac{4}{\zeta\omega}$

With Our Best Wishes Automatic Control (1) Course Staff

